Mathematics - Course 221

SIMPLE APPLICATIONS OF DERIVATIVES

I Equations of Tangent and Normal to a Curve

This exercise is included to consolidate the trainee's concept of derivative as tangent slope, and to review the procedure for finding the equation of a straight line.

DEFINITION: The normal to the curve $y=f(x)$ at a point $P(x, y)$ on the curve is the straight line passing through P, which is perpendicular to the tangent at P.

Figure 1

In Figure $1, P_{1} T$ is the tangent, and $P_{1} N$ is the normal to the curve $y=f(x)$, at the point $P_{1}\left(x_{1}, y_{1}\right)$.

The slope of tangent $P_{1} T=f^{1}\left(x_{1}\right)$.
.. Equation of tangent $P_{1} T$, is

$$
y-y_{1}=f^{1}\left(x_{1}\right)\left(x-x_{1}\right) \quad \text { (slope }- \text { point form) }
$$

Since the slopes of perpendicular lines are negative reciprocals (cf 221.20-1),
.. equation of normal $\mathrm{P}_{1} \mathrm{~N}$ is

$$
y-y_{2}=-\frac{1}{f^{1}\left(x_{1}\right)}\left(x-x_{1}\right)
$$

Example 1
Find the equations of the tangent and normal to the curve $y=4 x-x^{3}$ at $x=2$. Sketch the graph of $y=4 x-x^{3}$, showing tangent and normal at $x=2$.

Solution

First find the y co-ordinate at $x=2$, using curve
ion $y=4 x-x^{3}:$ equation $y=4 x-x^{3}$:

$$
\begin{aligned}
y & =4(2)-(2)^{3} \\
& =0
\end{aligned}
$$

.. Curve, tangent and normal intersect at (2,0).

$$
\cdot \frac{d y}{d x}=4-3 x^{2}
$$

$$
\therefore \text { at }(2,0), \text { tangent slope }=4-3(2)^{2}
$$

$$
=-8
$$

\therefore tangent equation is $y-y_{1}=m\left(x-x_{1}\right)$

$$
\text { ie, } \begin{aligned}
& y-0=-8(x-2) \\
&=-8 x+16 \\
& \text { ie, } \quad 8 x+y-16=0
\end{aligned}
$$

$$
\text { slope of normal }=-\frac{1}{\text { tangent slope }}
$$

$$
=-\frac{1}{-8}
$$

$$
=\frac{1}{8}
$$

. . Equation of normal is $y-y_{1}=m\left(x-x_{1}\right)$

$$
\begin{aligned}
& \text { ie, } y-0=\frac{1}{8}(x-2) \\
& \text { ie, } 8 y=x-2 \\
& \text { ie, } x-8 y-2=0
\end{aligned}
$$

The curve, tangent and normal are shown in Figure 2.

Figure 2

The application of derivatives to such familiar concepts as velocity and acceleration should reinforce the trainee's intuitive grasp of the significance of a derivative as a rate of change.

The present discussion of displacement, velocity and acceleration will be limited to the case of motion in one dimension only.

DEFINITION: The displacement (designated "s") of a particle, restricted to move along an axis, is given by its co-ordinate relative to the origin on the axis.
eg, displacements of particles \#l, \#2, respectively, in Figure 3 are -3 and +5 .
particle \#1
particle \#2

Figure 3

DEFINITION: Velocity (designated "v") is the rate of change of displacement with respect to time.

DEFINITION: Acceleration (designated "a") is the rate of change of velocity with respect to time.

Suppose a particle moving along the displacement axis passes points A and B, separated by a distance Δs, at times t_{1} and $t_{1}+\Delta t$, respectively (see Figure 4).

The particle's average velocity between A and B is

$$
\overline{\mathrm{v}}_{\mathrm{AB}}=\frac{\Delta S}{\Delta t}
$$

Its instantaneous velocity AT point A is

$$
\begin{aligned}
\mathrm{v}_{\mathrm{A}} & =\lim _{\mathrm{B} \rightarrow \mathrm{~A}} \overline{\mathrm{v}}_{\mathrm{AB}} \\
& =\lim _{\Delta t \rightarrow 0} \frac{\Delta s}{\Delta t}
\end{aligned}
$$

ie, restating the above in alternative notation,

$$
v\left(t_{1}\right)=s^{1}\left(t_{1}\right) \text { or }\left(\frac{d s}{d t}\right)_{t}=t_{1}
$$

where $s(t)$ is the displacement function.
The connection between $\frac{d s}{d t}$ of this lesson and $\frac{d y}{d x}$ of lesson 221.20-2, will be obvious from Figure 5, which shows a typical graph of displacement versus time.

Figure 5

In comparing Figures 4 and 5, note that points A and B appear on the vertical axis, and instants t_{1} and $t_{1}+\Delta t$ on the horizontal axis of Figure 5.

The trainee should refer back to Figure 4 of lesson 221.20-2, and note its similarity to Figure 5 on previous page.

From Figure 5,
instantaneous R / C "s" wrt "t" = lim (slope of secant $P_{1} Q$)
$\xrightarrow{\sim}$
instantaneous velocity, by $\quad=$ slope of tangent $P_{1} T$ definition

```
= derivative of s(t) at t = th
```

Note that in this application "instantaneous" does not appear in inverted commas, because $t=t_{1}$ does, literally, represent an instant of time.

To Summarize:

$$
\begin{aligned}
& \text { average velocity } \bar{v}=\frac{\Delta s}{\Delta t} \\
& \text { instantaneous velocity } v(t)=\frac{d s}{d t}=\lim _{\Delta t \rightarrow 0} \frac{\Delta s}{\Delta t}=s^{1}(t) \\
&=\text { slope of tangent to } \\
& \text { curve } s=s(t)
\end{aligned}
$$

Similar reasoning yields the following results for acceleration "a":

$$
\begin{aligned}
\text { average acceleration } \bar{a} & =\frac{\Delta v}{\Delta t} \\
\text { instantaneous acceleration } a(t) & =\frac{d v}{d t}=\lim _{\Delta t \rightarrow 0} \frac{\Delta v}{\Delta t}=v^{2}(t) \\
& =\begin{array}{l}
\text { slope of tangent to } \\
\end{array}
\end{aligned}
$$

Example 2

Find the velocity and acceleration functions if the displacement function is

$$
s(t)=6 t^{2}-4 t+2
$$

Calculate the velocity and acceleration at $t=5$.

Solution

Velocity function $v(t)=s^{1}(t)$

$$
\begin{aligned}
& =\frac{d}{d t}\left(6 t^{2}-4 t+2\right) \\
& =12 t-4
\end{aligned}
$$

$\underline{\text { Acceleration function }} a(t)=v^{1}(t)$

$$
=\frac{d}{d t}(12 t-4)
$$

$$
=12
$$

Velocity at $t=5, v(5)=12(5)-4$
$=56$

Acceleration at $t=5, a(5)=12$

Example 3

If an object is thrown vertically upward with initial velocity $v_{0} \mathrm{~m} / \mathrm{s}$, neglecting air resistance, its displacement upwards from its starting point is given by the function

$$
s(t)=v_{0} t-4.9 t^{2} \text { meters. }
$$

Find the time it takes a ball to reach its maximum height if thrown upward with initial velocity of $30 \mathrm{~m} / \mathrm{s}$.

$$
V_{0}=30 \Rightarrow s(t)=30 t-4.9 t^{2}
$$

The ball will be at maximum height when its velocity has fallen to zero. Therefore, proceed by setting the velocity equal to zero, and solving for t :

$$
\begin{aligned}
v(t) & =s^{1}(t) \\
& =30-9.8 t \\
v(t) & =0 \Rightarrow 30-9.8 t=0 \\
\Rightarrow \quad t & =\frac{30}{9.8} \\
& =3.1
\end{aligned}
$$

ie, ball reaches maximum height after 3.1 seconds.

Example 4

Two particles have displacement functions $s_{1}(t)=$ $t^{3}-t$ and $s_{2}(t)=6 t^{2}-t^{3}$, respectively. Find their velocities when their accelerations are equal.

Solution
Differentiate once to get the velocity functions:
$v_{1}(t)=\frac{d s_{1}}{d t}=3 t^{2}-1$, and $v_{2}(t)=\frac{d s_{2}}{d t}=12 t-3 t^{2}$
Differentiate again to get the acceleration functions:
$a_{1}(t)=\frac{d v_{1}}{d t}=6 t$, and $a_{2}(t)=\frac{d v_{2}}{d t}=12-6 t$
Set $a_{1}=a_{2}$ and solve for t :

$$
\begin{array}{rlrl}
6 t & =12-6 t \\
\therefore & 12 t & =12 \\
\therefore \quad & t & =1
\end{array}
$$

```
Substitute \(t=1\) in \(v-\) functions:
    \(v_{1}(1)=3(1)^{2}-1\)
    \(=2\)
and \(v_{2}(1)=12(1)-3(1)^{2}\)
    \(=9\)
ie, particle velocities are 2 and 9 when their
accelerations are equal.
```


ASSIGNMENT

1. Find the slope of the given curve at the given point:
(a) $y=8 x-3 x^{2}$
(b) $y=\frac{8}{x^{2}}$
(c) $y=x+\frac{2}{x}$
2. At what point is 2 the slope of the curve $y=4 x+x^{2}$?
3. Find the equations of tangent and normal to the curve
(a) $y=x(2-x)^{2}$ at $x=1$
(b) $y=x^{3}+3 x^{-1}$ at $x=1$
4. Find the velocity and acceleration at $t=2$ given the displacement function
(a) $s(t)=8 t^{2}-3 t$
(b) $s(t)=20-4 t^{2}-t^{4}$
(c) $s(t)=\frac{10}{t}\left(t^{3}+8\right)$
5. A baseball is thrown directly upward with initial velocity $22 \mathrm{~m} / \mathrm{s}$. Neglecting air resistance, how high will it rise?
6. Given $f(x)=\frac{x^{3}}{3}-x^{2}-2 x+1$, find the roots of the equation $f^{1}(x)=0$. What significance do these roots have for the curve $y=f(x)$? Plot $y=f(x)$. (See Appendix 3 for methods of solving quadratics).
L.C. Haacke
